Research on Chlorine Dioxide Gas Technology at Purdue University

Y. Han, R. H. Linton, and P. E. Nelson

Department of Food Science Purdue University West Lafayette, IN USA

2004 USDA/ARS-Purdue Collaboration Workshop Nov. 8-9, 2004, Philadelphia

Chlorine dioxide

Outline

- Chlorine dioxide (ClO₂)
- CIO₂ research at Purdue
- Food Processing
- Food Safety
- Food Security
- Research on basic science
- Technology commercialization

Chlorine Dioxide (ClO₂)

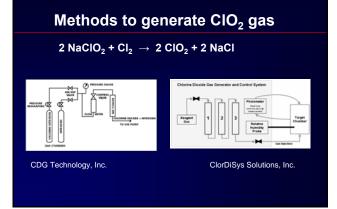
• Properties

- Boiling point	11ºC
- Solubility limit, aqueous, 25°C, 34.5 mm Hg	~ 3 g/L
- Solubility limit, aqueous, 0-5°C, 70-100mm Hg	~ 20 g/L
- Explosion velocity in air	50 m/s
- Explosion in air	> 10%
	or >130°C
Broad and high biocidal offectiveness (bacteria	

- Broad and high biocidal effectiveness (bacteria viruses, bacterial spores, and algae)

Chlorine Dioxide (ClO₂)

Advantages over chlorine


- 2.5 times oxidation capacity
- Lack of harmful chloramine and THMs
- Lower dosage
- Lack of odor and taste (Elphick, 1998)
- Advantages over ozone
 - Lower dosage
 - More stable and higher generation yield
 - Higher solubility in water

Uses of CIO₂ in Food Industry

Aqueous CIO₂

- 1995 Approved by FDA for poultry processing water
- 1998 Approved by FDA for washing produce (<3ppm)
- Gaseous CIO₂
 - 1996 Decontamination of food contact surfaces (aseptic juice storage tanks) and produce surfaces
 - 2001 Approved by EPA for emergency use in anthrax decontamination

1

<section-header><section-header><text><text><text><text><text><text>

CIO₂ research at Purdue

by ozone and chlorine dioxide gas (USDA) 2000-2003 Effect of different inoculation methods on		Research Grants
processed and refrigerated fruits and vegetable by ozone and chlorine dioxide gas (USDA) 2000-2003 Effect of different inoculation methods on determination of the efficacy of chlorine dioxide	1996-	using chlorine dioxide gas (Enerfab and
determination of the efficacy of chlorine dioxide	1997– 2000	processed and refrigerated fruits and vegetables
produce (FDA)	2000-2003	determination of the efficacy of chlorine dioxide gas and chlorinated water to decontaminate

Research Grants

2000-2005	Novel methods to sanitize fruits and vegetables using chlorine dioxide gas (USDA)
2002-2004	Efficacy of chlorine dioxide gas in reducing pathogens on meat products and poultry and its effects on meat quality (USDA)
2003-2004	Mechanisms of inactivation of bacteria and spores by chlorine dioxide (NSF)
2004-2007	Improving the safety of fresh fruits and vegetables with chlorine dioxide gas using a miniaturized industrial-size tunnel system (USDA)

Food Processing

- Sterilize food-contact surfaces

Sterilizing Aseptic Juice Storage Tank

Background

- Current sanitizer:
- 25ppm iodine solution
- 1 million gallon orange juice storage tanks – takes one week
- > 6 log reduction of spoilage isolates from orange juice after 10 mg/l CIO2 gas, 30 min, > 90% RH, 9-28°C

Treatment conditions leading to complete inactivation on epoxy surfaces

Microbes	Initial levels (log cfu)	CIO ₂ gas sterilization conditions
Lactobacillus buchneri	6.6	6 mg/l – 30 min, 25-26°C, 87% RH
	6.8	8 mg/l – 30 min, 10-11°C, 89% RH
Lactobacillus	6.4	8 mg/l – 30 min, 27°C, 75% RH
mesenteroides	6.5	8 mg/l – 30 min, 11°C, 93% RH
Candida spp. and	5.6	10 mg/l –10 min, 26°C, 91% RH
Saccharomyces cerevisiae	5.6	8 mg/l – 30 min, 11°C, 89% RH
Eurotium spp. and	5.4	10 mg/l –10 min, 26°C, 91% RH
Penicillium spp	5.4	8 mg/l – 30 min, 11°C, 89% RH

Sterilizing aseptic juice storage tank

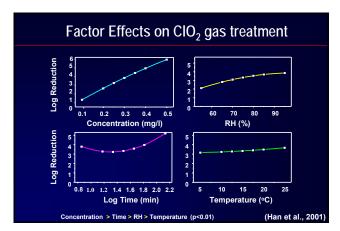
A pilot scale chlorine dioxide gas treatment system for juice storage tank

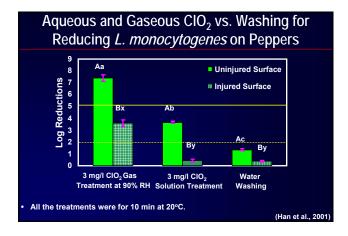
Food Safety

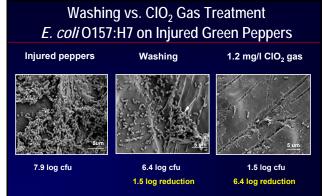
- Fruits and vegetables (focus)
- Meat surfaces
- Sprout seeds
- Almonds

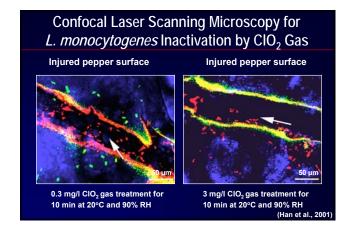
Background

Current pathogen reduction method


- Washing with chlorinated water (50-200ppm chlorine)
- Other aqueous sanitizers: H₂O₂, peroxyacetic acid, trisodium phosphate, ozone, chlorine dioxide, and their combinations
- Limitations
 - Less than 2 log reductions
 - (Beuchat, 1992 and 1999; Cherry, 1999)


Batch CIO₂ gas treatment **system**




Produce Overview : Efficacy of CIO ₂ Gas						
Microorganisms	Treatment conditions	Log Reduction	Surfaces			
E. coli O157:H7 L. monocytogenes	0.6 mg/l - 30 min	7.3 6.3	Green peppers (Han et al. 2000, 2001)			
E. coli O157:H7 L. monocytogenes	4.0 mg/l – 10 min 4.8 mg/l – 10 min	5.5 4.8	Apples (Du et al. 2002a and b)			
E. coli O157:H7 L. monocytogenes	0.6 mg/l –15 min	5.6	Strawberries (Han and Linton 2002)			
Salmonella spp. E. coli 0157:H7	0.5-1 mg/l –10 min	3-5	Cantaloupes (Han et al.			
L. monocytogenes	0.2 mg/l - 30 min	2	Lettuce (Dlima and Linton 2002)			

(Han et al., 2000)

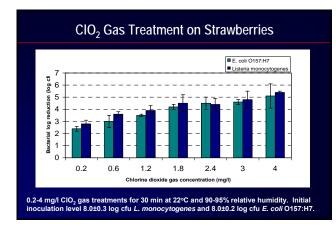
Treatment of green peppers

Total aerobic plate count, residual CIO₂ and residual chlorite after a continuous 200 ppm CIO₂ treatment for 10 min.

Samples	Total Aerobic Plate Count (TPC; log cfu/g)	ClO₂ (mg ClO₂/kg)	Chlorite (mg Cl₂/kg)
Before treatment (day 0)	2.95±0.29	0±0	0.07±0.12
After treatment (day 0)	ND ^b	0.13±0.05	0.39±0.49
Untreated and stored for 4 weeks	7.60±0.22	NAª	NAª
Treated and stored for 4 weeks	ND ^b	0.02±0.04	0±0

^aNA=Data not available

^bND=No bacteria detected

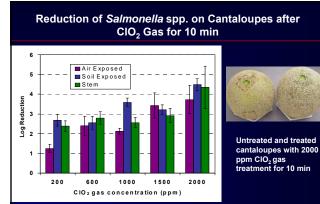

Extension of Shelf-life

Untreated green peppers stored for 4 wks at 4°C

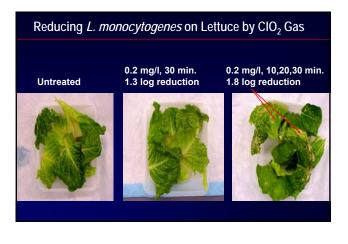
Green peppers treated with 200 ppm ClO_2 gas for 10 min and stored for 4 wks at 4°C

Treatment of strawberries

Total aerobic plate count, residues of CIO_2 , and residual chlorite after a continuous 1000 ppm CIO_2 gas treatment for 10 min.


Samples	Total Aerobic Plate Count (TPC; log cfu/g)	ClO₂ (mg ClO₂/kg)	Chlorite (mg Cl₂/kg)
Before treatment (day 0)	2.22±0.22	0±0	0±0
After treatment (day 0)	ND ^a	0.19±0.33	1.17±2.02
Untreated and stored for 1 week	2.40±0.22	NA ^b	NA ^b
Treated and stored for 1 week	ND ^a	0±0	0.07±0.12
^a ND=No bacteri	a detected ^b NA=I	Data not available)

Untreated and stored for 6 weeks at 4°C


Treated with 10 mg/l Chlorine dioxide gas for 10 min and stored for 6 weeks at 4°C

Reducing <i>E. coli</i> O157:H7 on Apples by ClO ₂ gas					
Inoculation site	CIO ₂ concentration (mg/L)	Population after air drying (log cfu/site)ª	Population after ClO ₂ treatment (log cfu/site) ^a	Log reduction (log cfu/site) ^{a, b}	
Calyx cavity	1.1	7.6±0.0	5.0±0.8	2.6±0.74C	
Caryx Cavity	3.3	7.5±0.0	3.6±0.5	4.0±0.4 B	
	4.8	7.6±0.2	2.9±0.0	4.8±0.2 B	
	7.2	7.4±0.2	0.9±0.8	6.5±0.7 A	
	1.2	7.410.2	0.910.0	0.510.7 A	
Stem cavity	1.1	7.6±0.1	4.8±0.5	2.8±0.4 B	
	3.3	7.5±0.2	3.3±0.7	3.9±0.3 A	
	4.8	7.5±0.1	3.8±0.8	3.7±0.7 A	
	7.2	7.5±0.2	3.4±0.3	4.1±0.2 A	
Pulp skin	1.1	7.3±0.0	2.8±0.5	4.5±0.5 B	
	3.3	7.3±0.1	0.4±0.7	6.9±0.7 A	
	4.8	7.3 ±0.1	ND ^c	≥7.3±0.1 A	
	7.2	7.3±0.0	ND	≥7.3±0.0 A	
*1.1-7.2 mg/L Cl	O ₂ gas treatments	for 30 minutes		(Du et al. 2002)	

Reduction of Salmonella on Oranges by CIO₂ gas

		INCR	EASE			
	50 ppm, 2 r	nin	50 ppm, 12	min	1	
SE	SIDE STEM BOTTOM	2.00 1.94 1.74	SIDE STEM BOTTOM	2.79 3.29 2.55	de.	
INCREASE	150 ppm, 2	min	150 ppm, 12	2 min		
NI	SIDE <mark>STEM</mark> BOTTOM	3.39 3.67 M 2.33	SIDE STEM BOTTOM	5.54 5.70 4 5.60		

A Pilot CIO₂ Gas Treatment System for Produce

A Laboratory CIO₂ Gas Treatment System for Meat

Efficacy of CIO₂ Gas in Reducing Microbes on Meat

Bacteria	Surface Type	ClO ₂ gas Treatment Conditions (3-5°C)	Log Reduction
Generic <i>E. coli</i> k-12 <i>Salmonella</i> spp.	Pork lean, fat and skin Beef fat and skin Chicken lean and skin	500 or 2500 ppm for 10, 20, or 30 min	1-2
Generic <i>E. coli</i> k-12 Salmonella spp.	Pork fat and skin, Chicken skin	4500 ppm for 10 min	3-4
E. coli O157:H7	Beef fat	4500 ppm for 10 min	2.3
Campylobacter jejuni	Pork lean, beef fat, and chicken skin	4500 ppm for 10 min	1.7-2.2

Food Security

- Fight against biological weapons in food systems
- Decontaminate food processing plants

On-line monitoring efficacy of chlorine dioxide gas treatment using bioluminescent bacteria

Dr. Bruce Applegate

Basic Science

- Mechanism of inactivation of bacteria and bacteria spores by CIO₂ gas
- Standard methodology for determination of efficacy of CIO₂ gas treatment on surfaces
- Simulation and modeling of CIO₂ gas treatment.....

Technology commercialization

Barriers for Technology Transfer

Regulations in food industry

Aqueous chlorine dioxide

- 1995, approved by FDA for poultry processing water
- 1998, approved by FDA for washing produce

Gaseous chlorine dioxide

- 2000, GRAS by FDA for CIO₂-releasing LDPE film
- 2002, Approved by EPA for stored potatoes
- Operation safety concerns

Acknowledgements

- USDA
- FDA
- NSF

0

0

- CDG Technology
- Enerfab
 - ClorDiSys Solutions
 - Tropicana

Questions??

